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INTRODUCTION 
 

A notion of geometry in general can be interpreted 
in many different ways. We think of geometry as of a 
set of objects and a congruence relation which is 
normally defined by some group of transformations. For 
instance, in Euclidean geometry in the plane we study 
points, lines, segments, polygons, circles, etc, the 
congruence relation is defined by a group of all length 
preserving transformations  𝑂(2, ℝ)  or the orthogonal 
group. 

The similarity between the geometrical figures and 
arithmetic clearly leads us to taking in consideration 
those which have the values expressed through integer 
numbers, or , generally through rational numbers. It is 
well-known the formula that generates the integer-sided 
triangles which are not congruent and having the 
perimeter equal to a given number n. According to 
Alcuin from York (735-804) {𝑡(𝑛)} the Alcuin’s 
sequence that expresses the number of  non-congruent 
triangles which have the perimeter n; for the first values 
of n we have :  

n 0 1 2 3 4 5 6 7 8 9 10 
𝑡(𝑛) 0 0 0 1 0 1 1 2 1 3 2 

It was proved that the function that generates the 
Alcuin’s sequence  is : 
 

𝑥3

(1 − 𝑥2)(1 − 𝑥3)(1 − 𝑥4) = �𝑡(𝑛)𝑥𝑛
∞

𝑛=0

 

 
An important role in the developing of the Geometry 

subject is taken by the computer, many of the results 
being the consequences of the calculus made with the 
help of some scientific programs or being part of some 
scientific  projects : for example in project Euler 
problem 75 https://projecteuler.net/problem=75) which 
seeks to determinate the numbers of the right triangles 
with the perimeter equal to n or the problem 257 
(http://projecteuler.net/problem=257) which seeks  the 
numbers of the integer triangles ABC with the integer 
bisectors and the ratio between the area ABC and area 

AEF rational numbers where E, F are the feet of the 
bisectors from B and C. The study here tries to present 
some remarkable results of the geometry of the figures 
of the integer values. 
 
1.TRIANGLES WITH INTEGER SIDES 
 

Historically speaking, the triangle is one of the 
mathematical objects which have attracted the attention 
of the man since antiquity. The collection of 84 
problems on the papyrus Rhind (discovered in 1858 in 
the Valley of the Middle Nile and achieved by the 
Scottish Egyptologist HenrzRind ) dated from 1780-
1700 B.C . which contains problems of geometry where 
the scribe Ahmes presents the calculus formula of the 
area of an isosceles triangle with the basis of 4 units and 
the sides of 10 units . In Book 4 from the Arithmetic of 
Diophantus it appears the problem of finding the right 
triangle with integer sides and the length of the bisector 
of one of the sharp angles rational number , having as a 
solution the triangle with the sides : 7, 24, 25 which cuts 
the 24 long leg having the length of  35

4
. We should also 

consider the works of Giovanni Ceva from the 17th 
century who considers the triangles with integer sides 
and  analyses the Cevians problems ( closed intervals 
which join a vertex with a point  from the opposite side 
) concurrent and rational. 
The first mathematician who tries to find integer 
triangles with integer medians is Euler, the smallest 
triangles being 2( 68,85, 87) and 2 ( 127, 131, 158) 

 
Figure 1.1 
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It can be noticed that the sides of the big triangle are 
the double of the medians of the other triangle. In 1779 
Euler investigates the triangles with the above-
mentioned property, obtaining for its sides the following 
expressions: 

 
𝑎 = 𝑚(9𝑚4 + 26𝑚2𝑛2 + 𝑛4)

− 𝑛(9𝑚4 − 6𝑚2𝑛2 + 𝑛4) 
𝑏 = 𝑚(9𝑚4 + 26𝑚2𝑛2 + 𝑛4)

+ 𝑛(9𝑚4 − 6𝑚2𝑛2 + 𝑛4) 
𝑐 = 2𝑚(9𝑚4 − 10𝑚2𝑛2 − 3𝑛4) 

 
In 1813 N. Fuss gives the first Example of an 

integer triangle with the three rational bisectors and, 
necessarily, the rational area as well (𝑎 = 14, 𝑏 =
 25, 𝑐 = 25) with the bisectors of 𝑖𝑎 = 24 and 

 

 𝑖𝑏 = � 4𝑎𝑐
(𝑎+𝑐)2

𝑝(𝑝 − 𝑏�
1
2 = 560

39
= 𝑖𝑐 

 
Definition 1.1. The triangle ABC is called an integer 
triangle if its sides have the length integer numbers. The 
triangle ABC is called rational triangle if its sides have 
the length rational numbers. 
 
Theorem 1.1. For every rational triangle ABC there is 
a similar integer triangle A’ B’ C’. 
 
Proof:  If ABC has the sides: 𝑎 = 𝑎1

𝑎2
, 𝑏 = 𝑏1

𝑏2
, 𝑐 = 𝑐1

𝑐2
,

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 ∈  𝒁, then the triangle with the sides 
𝑎1𝑏2𝑐2, 𝑎2𝑏1𝑐2, 𝑎2𝑏2𝑐1  is similar ( we multiplied the 
sides of the ABC  with 𝑎2𝑏2𝑐2 )  to ABC. 
 
Theorem 1.2 In a rational triangle the values of the 
cosines of the angles are rational numbers. 
Proof:  Applying the law of the cosines in ABC with 
the classical notation we have:  

              
𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 𝑐𝑜𝑠𝐴 

 
where 𝑐𝑜𝑠𝐴 = 𝑎2−𝑏2−𝑐2

2𝑏𝑐
∈ 𝑸 and the others  as analogue 

𝑐𝑜𝑠𝐵, 𝑐𝑜𝑠𝐶 ∈ 𝑸. 
 
Theorem 1.3 In a rational triangle the ratio between 
the sine of two angles is a rational number. 
Proof: From the sine rule: 

 
𝑎

sin𝐴
=

𝑏
sin𝐶

=
𝑐

sin𝐶
= 2𝑅, 

 
We deduce that : sin 𝐴

sin 𝐵
= 𝑎

𝑏
∈ 𝑸. 

 
Consequence 1.1. If ABC is a rational triangle which 
has sin𝐴 = 𝑟1√𝑛   then 

 sin𝐵 = 𝑟2√𝑛 ,   sin𝐶 = 𝑟3√𝑛  
where 𝑟1, 𝑟2, 𝑟3 ∈ 𝑸  and 𝑛 ∈ 𝑵. 

Proof: We have : sin𝐵 = 𝑏
𝑎

sin𝐴 = 𝑏
𝑎
𝑟1√𝑛 = 𝑟2√𝑛 . 

Analogous  for sin C. 

Definition 1.2.  Let    𝑛 > 1   free of squars. We say that 
angle A belongs to the class n iff        𝑠𝑖𝑛 𝐴 ∈ 𝑸�√𝑛�. If 
𝑠𝑖𝑛 𝐴 ∈ 𝑸 we say that angle A belongs to class 1. 
 
Observation 1.1. The rational triangle ABC belongs to 
class n cu n ∈ 𝑵∗,𝑛 > 1 , n free of squares , if 
𝑠𝑖𝑛 𝐴,   𝑠𝑖𝑛𝐵,   𝑠𝑖𝑛𝐶 ∈ 𝑸�√𝑛� . If 𝑠𝑖𝑛 𝐴,   𝑠𝑖𝑛𝐵,   𝑠𝑖𝑛𝐶 ∈
𝑸 we say that angle A belongs to class 1. 
 
Example: For  𝑎 = 7, 𝑏 = 5, 𝑐 = 8 the triangle belongs 
to  class 3 because 𝑠𝑖𝑛𝐴 = 1

2 √3. 
Through direct calculus we find the class of some 
triangles: 

a b c Class 

1 2 2 15 

2 2 3 7 

2 3 4 15 

3 4 5 1 

3 7 8 3 

5 7 8 3 

2 7 7 3 

5 5 6 1 

 
Consequence  1.2. The rational right triangles belong 
to class 1. 
Proof:  Obviously sin A=1 , 𝐵 = 𝑏

𝑐
∈ 𝑸 . 

 
Theorem 1.4. If a triangle has the cosines for two 
angles rational numbers , then the cosine of the third 
one is rational if and only if the two angles belong to the 
same class. 
Proof:  For C, the third angle, we have : 𝐶 = 1800 −
𝐴 − 𝐵 where 𝑐𝑜𝑠𝐶 = sin𝐴 𝑠𝑖𝑛𝐵 − 𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 . In 
conclusion 𝑐𝑜𝑠𝐶 ∈ 𝑸 if and only if  𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵 ∈ 𝐐  is 
equivalent to  A and B from the same class. 
 
2.TRIANGLES WITH INTEGER MEDIANS 
 

In order to find the expressions of the median we 
will apply the law of the cosine for ABC and ADC with 
AD as a median :  
𝐴𝐷2 = 𝐴𝐶2 + 𝐷𝐶2 − 2𝐴𝐶 ∙ 𝐷𝐶 ∙ 𝑐𝑜𝑠𝐶̂ 
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𝐴𝐵2 = 𝐴𝐶2 + 𝐵𝐶2 − 2𝐴𝐶 ∙ 𝐵𝐶 ∙ 𝑐𝑜𝑠𝐶̂ 
 

We eliminate  𝑐𝑜𝑠𝐶̂ from the two equalities and  
we obtain the well-known relation of the median: 
 
4𝐴𝐷2 = 2𝐴𝐵2 + 2𝐴𝐶2 − 𝐵𝐶2 

 
If the previously mentioned equality stays true for  

the natural numbers it is necessary that BC=c  to be 
even and  their analogous  as well so that the other 
medians to be integer. Therefore we say that the triangle 
ABC has even sides with the lengths: 2a, 2b, 2c.We 
mark their medians from  A,B, C  with  k, l, m. The 
relations that give these lengths become : 
 

�
𝑘2 = 2𝑏2 + 2𝑐2 − 𝑎2
𝑙2 = 2𝑐2 + 2𝑎2 − 𝑏2
𝑚2 = 2𝑎2 + 2𝑏2 − 𝑐2

                                        (2.1.)

  
  

By adding them we obtain : 𝑘2 + 𝑙2 + 𝑚2 = 3(𝑎2 +
𝑏2 + 𝑐2) and the first equation can be written like this : 
𝑘2 = 2𝑏2 + 2𝑐2 − 𝑎2 = 2(𝑎2 + 𝑏2 + 𝑐2) − 3𝑎2 =
2
3

(𝑘2 + 𝑙2 + 𝑚2) − 3𝑎2 . It follows that the relations 
that give the expressions of the semi sides according to 
the medians are : 
 

�
9𝑎2 = 2𝑙2 + 2𝑚2 − 𝑘2
9𝑏2 = 2𝑚2 + 2𝑘2 − 𝑙2
9𝑐2 = 2𝑘2 + 𝑙2 − 𝑚2

                                         (2.2.)

  
 

Definition 2.1. We name a med- triangle an integer 
triangle with integer medians. We mark the set of the 
med- triangles with MED. 
 
Theorem21. If  a, b, c, k, l, m, are natural numbers with  
(𝑎, 𝑏, 𝑐, 𝑘, 𝑙,𝑚) = 1 then only one of the halves of the 
sides is an even number. 
 
Proof: Suppose  that two halves of the sides are even  
and one of them is odd meaning that : 𝑎 ≡ 0(𝑚𝑜𝑑 2),
𝑏 ≡ 0(𝑚𝑜𝑑 2) 𝑎𝑛𝑑 𝑐 ≡ 1(𝑚𝑜𝑑 2) . Then from the 
equation (2.1.) we get:  𝑘2 ≡ 2𝑏2 + 2𝑐2 − 𝑎2 ≡
2(𝑚𝑜𝑑 4)  which is false because a perfect square is 
congruent with 0 or 1 modulo 4. 
Suppose that all the halves of the sides are odd meaning 
that 𝑎 ≡ 1(𝑚𝑜𝑑 2), 𝑏 ≡ 1(𝑚𝑜𝑑 2) 𝑎𝑛𝑑 𝑐 ≡
1(𝑚𝑜𝑑 2) . Then the same relation becomes: 𝑘2 ≡
2𝑏2 + 2𝑐2 − 𝑎2 ≡ 3(𝑚𝑜𝑑 4), again impossible. 
It stays true the fact that only one half of the sides is 
even , the other two being odd. 
 
Theorem 2.2. The semi perimeter of the triangle MED 
is even . 
Proof: Pointed in the theorem 2.1. 
 
Theorem 2.3. Only one median is even the other two 
being odd. 
Proof: From theorem 2.1 we find out that only one half 
of the side is even , being marked with  a. From the first 

relation (2.1.) we have k which is even and from the 
other relations from (2.1.) that l, m are odd. 
 
Theorem 2.4. Only one of the numbers a, b, c, k, l, m is 
devisable by 4. 
Proof:  According to the previous theorem we can 
suppose that 𝑎 = 2 ∝, 𝑏 = 2𝛽 + 1, 𝑐 = 2𝛾 + 1 and  
𝑘 = 2𝛿, 𝑙 = 2𝜆 + 1, 𝑚 = 2𝜇 + 1 . Replacing the first 
relation with (2.1.) we get: 
 
𝑘2 + 𝑎2 = 2𝑏2 + 2𝑐2 

 
or 
 
4𝛿2 + 4𝛼2 = 8𝛽2 + 8𝛽 + 2 + 8𝛾2 + 8𝛾 + 2 

 
from where: 
 
𝛿2 + 𝛼2 = 2𝛽2 + 2𝛽 + 2𝛾2 + 2𝛾 + 1 
 
 meaning that  𝛿2 + 𝛼2 ≡ 1(𝑚𝑜𝑑 2) which 
demonstrates that or  ∝  or 𝛿 are even and  or  a or  k are 
divisible by 4. 
 
Theorem 2.5. (Euler) If the triangle ABC with the sides 
(2a, 2b, 2c) is in MED and has the medians (k, l, m) 
then the triangle A’B’C’ with the sides  (2k, 2l, 2m) is in 
MED. 
Proof: By marking the medians of the triangle A’B’C’ 
with 𝑘′ , 𝑙′,  we have: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑘

′2 =  2(2𝑐2 + 2𝑎2 − 𝑏2) + 2(2𝑎2 + 2𝑏2 − 𝑐2) −
(2𝑏2 + 2𝑐2 − 𝑎2) = 9𝑎2

𝑙′2 =  2(2𝑎2 + 2𝑏2 − 𝑐2) + 2(2𝑏2 + 2𝑐2 − 𝑎2) −
(2𝑐2 + 2𝑎2 − 𝑏2) = 9𝑏2

𝑚′2 =  2(2𝑏2 + 2𝑐2 − 𝑎2) + 2(2𝑐2 + 2𝑎2 − 𝑏2) −
(2𝑎2 + 2𝑏2 − 𝑐2) = 9𝑐2

 

 
meaning that the medians of the new triangle are  exact 
(3a,3b,3c). The process can be clearly continued , 
meaning that if  (2𝑎, 2𝑏, 2𝑐)  ∈ 𝑀𝐸𝐷 with the medians  
(k, l, m) then (2𝑘, 2𝑙, 2𝑚) ∈ 𝑀𝐸𝐷  with the medians 
(3a,3b,3c) and therefore  (6𝑎, 6𝑏, 6𝑐) ∈ 𝑀𝐸𝐷  is a 
triangle similar to the initial one. 
 
Theorem 3.6. There are no isosceles triangles in MED. 
Proof:  If a=b then k=l  and the equations (2.1.) 
become: 

 

  �𝑘
2 = 𝑎2 + 2𝑐2

𝑚2 = 4𝑎2 − 𝑐2
                                            (2.3.) 

 
The second equation tells us that m and c have the same 
parity and if they are odd  𝑚2 ≡ 1(𝑚𝑜𝑑 4)  and  
4𝑎2 − 𝑐2 ≡ 3(𝑚𝑜𝑑 4)  the equality is impossible . 
Hence both m and c are even or 𝑐 = 2𝐶,   𝑚 = 2𝑀 the 
relations  (3.3.) being: 
 

�𝑘
2 = 𝑎2 + 8𝐶2
𝑀2 = 𝑎2 − 𝐶2
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Or replacing the first relation with their difference we 
get: 
 

�𝑘
2 = 𝑀2 + 9𝐶2
𝑎2 = 𝑀2 + 𝐶2

                                                      (2.4.) 
 

This way we got to the well-known Euler’s problem 
referring to concordant numbers which is  stated like 
this : 
The numbers a and b are told to be concordant if there 
exist  integer numbers x, y, z, t  with  𝑥𝑦 ≠ 0  so that: 

�𝑥
2 + 𝑎𝑦2 = 𝑧2

𝑥2 + 𝑏𝑦2 = 𝑡2
. 

On the contrary (  if   the numbers  x, y, z, t under the 
above conditions don’t exist ) the numbers are called 
DISCONCORDANT. 
The problem we got to shows again the fact that the 
numbers 1 and 9 are or aren’t concordant. It is 
demonstrated [2] that the numbers 1 and 9 are 
DISCORCONDANT therefore there aren’t integer 
numbers k, a, M, C to respect the equations (3.4.).The 
consequence is that there are no isosceles triangles in 
the set MED. 
 
Theorem 2.7. If the triangle ABC is right with  𝑏2 +
𝑐2 = 𝑎2 then in the triangle with the sides ( 2a,2b, 2c) 
we only have a median with the length a natural 
number. 
Proof : If 𝑏2 + 𝑐2 = 𝑎2 the equations (2.1) become: 
 

�
𝑘2 = 𝑏2 + 𝑐2
𝑙2 = 4𝑐2 + 𝑏2
𝑚2 = 4𝑏2 + 𝑐2

 

 
where the median from A is obviously k=a. Considering 
the pythagoric numbers a, b, c given by: 
 

�
𝑎 = 𝑢2 + 𝑣2
𝑏 = 2𝑢𝑣

𝑐 = 𝑢2 − 𝑣2
 

 
We get for l and m the following expressions : 
 

�𝑙
2 = 4𝑢4 − 8𝑢2𝑣2 + 4𝑣2
𝑚2 = 𝑢4 + 14𝑢2𝑣2 + 𝑣2

 
 

Mordell ( [7]  pages 20-21) show that the only 
solutions are for the pairs  
(𝑢2, 𝑣2) ∈ {(1,0), (1,1), (0,1)} ,  cases in which the 
triangle becomes confluent. 

 
Definition 2.2.  We say that the triangle ABC is an 
automedian triangle  if its medians are proportional 
with its sides. 
 
Theorem 2.8. The triangle with the sides 2a, 2b, 2c is 
automedian if and only if one of the relations : 
 
𝑎2 + 𝑏2 = 2𝑐2𝑏2 + 𝑐2 = 2𝑎2𝑎2 + 𝑐2 = 2𝑏2 
 
is true. 

Proof: Supposing  we have the relation : 𝑎2 + 𝑐2 = 2𝑏2 
which,  replaced in  (2.1),  gives us: 
 

�
𝑘2 = 3𝑐2
𝑙2 = 3𝑏2
𝑚2 = 3𝑎2

 

 
From here it results that the medians are proportional 
with its sides. 
Vice versa  if the medians are proportional with the 
sides we have : 
 
𝑘
𝑐

=
𝑙
𝑏

=
𝑚
𝑎

= 𝑥 
 

Then the equations (2.1.) become: 
 

�
𝑥2𝑐2 = 2𝑏2 + 2𝑐2 − 𝑎2
𝑥2𝑏2 = 2𝑐2 + 2𝑎2 − 𝑏2
𝑥2𝑎2 = 2𝑎2 + 2𝑏2 − 𝑐2

 

 
We eliminate X from the first two equations and  we 
get:  

𝑐2(2𝑐2 + 2𝑎2 − 𝑏2) = 𝑏2(2𝑏2 + 2𝑐2 − 𝑎2) 
 

Through calculus we get : (2𝑐2 + 𝑏2)(𝑐2 + 𝑎2 −
2𝑏2) = 0 and  we also get the condition   𝑐2 + 𝑎2 −
2𝑏2 = 0 . If we had started with 𝑘

𝑎
= 𝑙

𝑐
= 𝑚

𝑏
= 𝑥  we 

would have got   𝑐2 + 𝑏2 − 2𝑎2 = 0 and if we  had 
started with    𝑘

𝑏
= 𝑙

𝑎
= 𝑚

𝑐
= 𝑥 then we would have found 

out that  :  𝑏2 + 𝑎2 − 2𝑐2 = 0. 
 
Theorem 2.9. (Euler 1779)The triangle with the sides: 
(2a, 2b, 2c) gives us the expressions: 
 

�
𝑎 = (𝑚 + 𝑛)𝑝 − (𝑚 − 𝑛)𝑞
𝑏 = (𝑚 − 𝑛)𝑝 + (𝑚 + 𝑛)𝑞

𝑐 = 2𝑚𝑝 − 2𝑛𝑞
 

 
where     
 𝑝 = (𝑚2+𝑛2)(9𝑚2−𝑛2),        𝑞 = 2𝑚𝑛(9𝑚2 + 𝑛2)      
with 𝑚,𝑛 ∈ 𝒁  has integer medians. 
 
Observation:   Not all the triangles from  MED can be 
obtained through Euler parameter. For example for  
a=226, b=486, c=580 we have  k=523, l=367 m=244 a 
triangle which does not come from Euler’s parameter.  
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