THE INTRINSIC IMPORTANCE OF THE TRANSMISSION ANGLE IN THE APPROXIMATE SYNTHESIS OF A LINKAGE MECHANISMS

VASILE ZAMFIR ${ }^{1}$, HORIA MARIUS VÎRGOLICI ${ }^{2}$

Abstract

In this paper, we present approximate synthesis procedures for some function generating simple mechanism involving the conditions on the transmission angle.

Keywords: approximate synthesis, transmission angle, simple mechanisms

1. INTRODUCTION

The transmission angle of a simple four-bar linkage is defined as the angle between the direction of motion t_{a} of the point on the driven member (crank pin B) at which the driving force is applied and the direction of the relative motion t_{r} of the driven point (crank pin B) with respect to the driving point (crank pin A). In fig. 1, crank pin A of the input crank $\mathrm{A}_{0} \mathrm{~A}$ drives crank B of the output crank $\mathrm{B}_{0} \mathrm{~B}$ through the connection rod $A B$. The direction of motion of crank pin B , shown as t_{a}, is perpendicular to crank $\mathrm{B}_{0} \mathrm{~B}$, and the direction of relative motion of crank pin B with respect to crank pin A , shown as t_{r}, is perpendicular to connecting rod AB . The angle between lines t_{a} and t_{r} is the transmission angle γ. This angle is equal to the angle between the connecting rod and the output

Fig. 1. Definition of transmission angle

[^0]

Fig. 2. Relationship between transmission angle γ and pressure angle δ
crank. It may also be defined as $180^{\circ}-\gamma$. In this paper, for the sake of convenience, the transmission angle γ, or $180^{\circ}-\gamma$ (which ever is acute), will be used.

The transmission angle in linkage design is of the same relative importance as the pressure angle in cam design. In fact, the transmission angle is the complement of the pressure angle. The pressure angle of a cam is the angle between the normal of the pitch curve and the direction of motion of the follower. Fig. 2 illustrates the equivalent four-bar linkage $A_{0} \mathrm{ABB}_{0}$ to the cam and follower at that particular position. The imaginary crank pin A is the center of curvature of the pitch curve, and the imaginary connecting rod AB is the radius of curvature. The pressure angle δ between the cam and follower is the complement of the transmission angle γ, as shown in the figure.

The importance of the transmission angle is indicated by the following two statements:
a. The force transmission from the connecting rod to the output crank is most effective when the transmission angle is 90°. Of course, it is most desirable to have this angle deviate from 90° as little as possible throughout the range of operation. (In some machinery, a self-locking action is purposely designed, using a very small or zero transmission angles).
b. In some precision machinery, when the transmission angle is too small, the accuracy of the output motion becomes very sensitive to the manufacturing tolerances of the link lengths and clearances between joints. Also, a poor transmission angle can cause objectionable noise and jerk at high speed.

The minimum permissible transmission angle of a linkage mechanism depends on many factors, such as the magnitude of the transmitted forces, the manufacturing tolerances, and the friction between the joints, speed etc. A minimum transmission angle of 40° is suggested as a good practical limit by some designers. In some highspeed machinery, a minimum value of 45° is necessary. This is a "rule of thumb". The designer needs to observe the motion and load of mechanisms and develop an intuitive feel to help him decide the minimum transmission angle for a particular design.

So, the transmission angle of a four bar mechanism is formed between the direction of joint C absolute velocity and its relative velocity in relation to joint B , fig.3.

In order to have a mechanism with good transmission characteristics of the force from the connecting rod BC to the effector element CD, the value of the transmission angle γ should range between the limits ($\gamma_{\text {ad }}$ being allowable transmission angle):

$$
\begin{equation*}
\gamma_{\min } \geq \gamma_{\mathrm{ad}} \text { and } \gamma_{\max } \leq 180^{\circ}-\gamma_{\mathrm{ad}} \tag{1}
\end{equation*}
$$

The transmission angle γ can be expressed function of the lengths of the mechanism sides and of the independent variable φ, applying the cosine theorem in the

Fig. 3. Transmission angle γ, input angle α and output angle χ triangles ABD and BCD :

$$
\begin{equation*}
\mathrm{BD}^{2}=b^{2}+c^{2}-2 b \cos \gamma=1+a^{2}-2 a \cos \varphi \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\cos \gamma=\frac{b^{2}+c^{2}-a^{2}-1}{2 b c}+\frac{a}{b c} \cos \varphi \tag{3}
\end{equation*}
$$

As the mechanism allows the crank, the angle φ can take values comprised between 0° and 360°. It can be noticed from relation (3) that the values of angle φ leading to extreme values for the transmission angle are 180°, respectively 0° and 360°, thus:

- for $\varphi=180^{0}$, we get $\gamma_{\max }$:

$$
\begin{equation*}
\cos \gamma_{\max }=\frac{b^{2}+c^{2}-(1+a)^{2}}{2 b c} \tag{4}
\end{equation*}
$$

- for $\varphi=0^{0}, 360^{\circ}$, we get $\gamma_{\text {min }}$:

$$
\begin{equation*}
\cos \gamma_{\min }=\frac{b^{2}+c^{2}-(1-a)^{2}}{2 b c} \tag{5}
\end{equation*}
$$

Consequently, for the transmission angle in a four bar mechanism to take values within the limits expressed by relation (1) and for the driving element $A B$ to be a crank, the following two inequalities (resulting from the expressions (4) and (5) taking into account relations (1)) have to be met:

$$
\begin{equation*}
2 b c \cos \gamma_{a d} \geq b^{2}+c^{2}-(1-a)^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b c \cos \gamma_{a d} \geq(1+a)^{2}-b^{2}-c^{2} \tag{7}
\end{equation*}
$$

2. THE ALGORITHM PRESENTATION FOR THE FOUR-BAR MECHANISM WITH DOUBLE CRANK

It is known that the four-bar mechanism with double crank is a complex four bar mechanism, where the shortest element is the base (Grashoff conditions). Further we present an approximate synthesis algorithm for a function generating four bar mechanism with two cranks, imposing conditions on the transmission angle between the connecting rod and the driven crank.

Fig. 4. The mechanism limit positions

Let the four bar mechanism with two cranks in fig. 4, in the limit positions $\mathrm{AB}_{3} \mathrm{C}_{3} \mathrm{D}$ and $\mathrm{AB}_{4} \mathrm{C}_{4} \mathrm{D}$, corresponding to the angles of the driving crank $\varphi=0^{\circ}$, respectively $\varphi=180^{\circ}$.

The transmission angles between the connecting rod and the driven crank have been written down with γ_{3} and γ_{4} and χ_{3} and χ_{4} marking the positioning angles of the driven crank in relation to the direction of the support $A D$, while the relative lengths of the mechanism sides have been noted down with a $=\mathrm{AB}, b=\mathrm{BC}, c=\mathrm{CD}$ and $1=\mathrm{AD}$. Considering the mechanism in the limit position $\mathrm{AB}_{3} \mathrm{C}_{3} \mathrm{D}$, it
is easy to find out that:

$$
\begin{equation*}
\mathrm{DB}_{3}=\mathrm{AB}_{3}-\mathrm{AD}=a-1 \tag{8}
\end{equation*}
$$

and that B_{3} is identical with the rotation instantaneous center in the relative motion of the elements $A B$ and CD.

Taking into account the fact that B_{3} coincides with the instantaneous rotation center $I_{13} \equiv I_{31}$, the relative velocity of the point B_{3} is equal to 0 , hence the equality relation of absolute velocities can be written:

$$
\begin{equation*}
a \mathrm{~d} \varphi=(a-1) \mathrm{d} \chi \tag{9}
\end{equation*}
$$

Writing down with $i=\mathrm{d} \chi / \mathrm{d} \varphi$ the transmission ratio between the two cranks, the relation (9) can be rewritten this way:

$$
\begin{equation*}
a=\frac{i_{3}}{i_{3}-1} \tag{10}
\end{equation*}
$$

Applying the sine theorem in the triangle $\mathrm{B}_{3} \mathrm{C}_{3} \mathrm{D}$ the following relations can be written and the relative lengths of the sides BC and CD can be determined from them:

$$
\begin{equation*}
B C=b=\frac{\sin \chi_{3}}{\left(i_{3}-1\right) \sin \gamma_{3}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
C D=c=\frac{\sin \left(\chi_{3}-\gamma_{3}\right)}{\left(i_{3}-1\right) \sin \gamma_{3}} \tag{12}
\end{equation*}
$$

Considering the limit position $\mathrm{AB}_{4} \mathrm{C}_{4} \mathrm{D}$, where the point B_{4} coincides with the same instantaneous rotation center $\mathrm{I}_{13} \equiv \mathrm{I}_{31}$, but in another position, the equality relation (9) can be written:

$$
\begin{equation*}
a \mathrm{~d} \varphi=(a+1) \mathrm{d} \chi \tag{13}
\end{equation*}
$$

Starting from those mentioned above, relation (13) becomes:

$$
\begin{equation*}
a=\frac{i_{4}}{1-i_{4}} \tag{14}
\end{equation*}
$$

Applying the sine theorem in the triangle $\mathrm{B}_{4} \mathrm{C}_{4} \mathrm{D}$ and taking into account relation (14), the relative lengths b and c are obtained:

$$
\begin{align*}
& b=\frac{\sin \chi_{4}}{\left(1-i_{4}\right) \sin \gamma_{4}} \tag{15}\\
& c=\frac{\sin \left(\gamma_{4}-\chi_{4}\right)}{\left(1-i_{4}\right) \sin \gamma_{4}} \tag{16}
\end{align*}
$$

Based on the relations (10), (11), (12) and (14), (15), (16) the following equalities can be written:

$$
\begin{gather*}
\frac{i_{3}}{i_{3}-1}=\frac{i_{4}}{1-i_{4}} \tag{17}\\
\frac{\sin \chi_{3}}{\left(i_{3}-1\right) \sin \gamma_{3}}=\frac{\sin \chi_{4}}{\left(1-i_{4}\right) \sin \gamma_{4}} \tag{18}\\
\frac{\sin \left(\chi_{3}-\gamma_{3}\right)}{\left(i_{3}-1\right) \sin \gamma_{3}}=\frac{\sin \left(\gamma_{4}-\chi_{4}\right)}{\left(1-i_{4}\right) \sin \gamma_{4}} \tag{19}
\end{gather*}
$$

The equalities (17), (18) and (19) make up a system of three equations with four unknowns: i_{3}, i_{4}, χ_{3} şi χ_{4}, for the solution of which one of the unknowns has to be chosen arbitrarily. Let, for example, χ_{4} are chosen arbitrarily. By dividing equality (19) to equality (18), we get the following equality:

$$
\begin{equation*}
\frac{\sin \left(\chi_{3}-\gamma_{3}\right)}{\sin \gamma_{3}}=\frac{\sin \left(\gamma_{4}-\chi_{4}\right)}{\sin \gamma_{4}} \tag{20}
\end{equation*}
$$

Having been developed and ordered, relation (20) becomes:

$$
\begin{equation*}
\operatorname{ctg} \chi_{3}=\operatorname{ctg} \gamma_{3}-\frac{\sin \left(\gamma_{4}-\chi_{4}\right)}{\sin \gamma_{3} \sin \chi_{4}} \tag{21}
\end{equation*}
$$

As it has been shown above, depending on the values of the transmission angles in the two limit positions, γ_{3} and γ_{4}, and by choosing the value of the position angle χ_{4}, the corresponding value of the angle χ_{3} can be calculated with relation (21).

The transmission ratio i_{4} results from the relation (17):

$$
\begin{equation*}
i_{4}=\frac{i_{3}}{2 i_{3}-1} \tag{22}
\end{equation*}
$$

The transmission ratio i_{3} is obtained from the relation (18), where we take into account relation (22):

$$
\begin{equation*}
i_{3}=\frac{1}{2}\left(\frac{\sin \chi_{3} \sin \gamma_{4}}{\sin \chi_{4} \sin \gamma_{3}}+1\right) \tag{23}
\end{equation*}
$$

At this level, we know the values χ_{3} (from relation (21)) and i_{3} (from relation (23)) which, by being introduced into relations (10), (11) and (12), allow us to determine the unknown parameters a, b and c of the four bar mechanism with double crank.

It should be mentioned that by choosing the value of angle χ_{4} arbitrarily, the resulting mechanism may happen not to be of the two crank types. Obviously, such solutions are left aside. It can be stated, from those mentioned above, that the result depends to a large extent on the arbitrarily chosen value for the position angle χ_{4}.

Consequently, in order to obtain acceptable solutions, in [1] it is recommendable that the value of the angle χ_{4} should be chosen with the relation $\chi_{4}=\mathrm{k}$ $\gamma_{a d}$, with $0<k<1$, where $\gamma_{a d}$ is the allowable transmission angle.

The solutions of the obtained mechanism will be checked to be of the two crank types with the relations:
$>a>1, b>1, c>1$ and
$>1+$ the length of the longest element < the length sum of the other two elements.

For the particular case $\gamma_{3}=\gamma_{4}=\gamma_{a d}$ (the case when we have the most advantageous transmission conditions) relations (21) and (23) become:

$$
\begin{align*}
\operatorname{ctg} \chi_{3} & =2 \operatorname{ctg} \gamma_{a d}-\operatorname{ctg} \chi_{4} \tag{24}\\
i_{3} & =\frac{1}{2}\left(\frac{\sin \chi_{3}}{\sin \chi_{4}}+1\right) \tag{25}
\end{align*}
$$

2.1. Example of calculation

Determine the relative lengths of the sides of a four bar mechanism with two cranks, having the most advantageous transmission conditions for a minimum allowable angle $\gamma_{a d}=50^{\circ}$.

Solution:

1) The angle $\chi_{4}=0,8 \gamma_{a d}=40^{\circ}$ is chosen.
2) γ_{3} is determined with relation (24): $\gamma_{3}=115,94^{0}$.
3) i_{3} is determined with relation (25): $i_{3}=1,2$.
4) The parameters a, b şi c are determined with relations (14), (15) şi (16): $a=$ 6,$01 ; b=5,88 ; c=5,97$. It is found that $\mathrm{AB}=a$ is the longest element.
5) Checking: the mechanism is a complex double cranked four bar one, because $a, b, c>1$ and $a+1<b+c$.
6) The positional analysis of the obtained mechanism is undertaken.

To this end, we assume the mechanism to be in a certain position, in relation to a reference system with the origin in the joint A and the axis Ox overlapping the direction $A D$, fig. 5 . Our aim is to determine the positional relation $\chi_{4}=\chi_{4}(\varphi)$, where $0 \leq \varphi \leq 360^{\circ}$.

Starting from the notations in fig. 5, the positional analysis algorithm is carried out according to the following steps:
6.1) The coordinates of the mobile joint B are determined:

Fig. 5. The positional analysis

$$
\mathrm{x}_{\mathrm{B}}=a \cos \varphi ; \mathrm{y}_{\mathrm{B}}=a \sin \varphi
$$

6.2) The coordinates of the fixed joint D are determined:

$$
\mathrm{x}_{\mathrm{D}}=1 ; \mathrm{y}_{\mathrm{D}}=0
$$

6.3) The values U and V are calculated:

$$
U=\mathrm{x}_{\mathrm{B}}-\mathrm{x}_{\mathrm{D}}=a \cos \varphi-1 ; V=\mathrm{y}_{\mathrm{B}}-\mathrm{y}_{\mathrm{D}}=a \sin \varphi
$$

6.4) The distance $\mathrm{BD}=d$ is calculated:

$$
d=\sqrt{U^{2}+V^{2}}=\sqrt{a^{2}+1-2 a \cos \varphi}
$$

6.5) The slope angle α of the direction BD is calculated:

$$
\alpha=\operatorname{arctg} \frac{V}{U}
$$

6.6) The angle β is calculated applying the cosine theorem in the triangle DBC:

$$
\beta=\arccos \frac{c^{2}+d^{2}-b^{2}}{2 d c}
$$

6.7) The angle χ^{*} and then χ are calculated, considering the α oriented angle:

$$
\chi^{*}=\beta-\alpha ; \chi=180^{0}+\alpha-\beta
$$

6.8) The angle γ in the triangle DBC is calculated and then it is compared to $\gamma_{a d}$ (the result should be $\gamma \geq \gamma_{a d}$):

$$
\gamma=\arccos \frac{b^{2}+c^{2}-d^{2}}{2 b c}
$$

6.9) The diagrams $\chi=\chi(\varphi)$ are plotted, for $0 \leq \varphi \leq 360^{\circ}$.

The above shown procedure will be repeated for several values of the angles $\gamma_{a d}$ and χ_{4} or χ_{3} for various values given to coefficient k in the interval $0<k<1$. Suitable solutions will be chosen.

2.2 Conclusions

The solutions, obtained on the basis of the algorithm put forward, largely depend on the arbitrarily chosen solutions for the angles $\gamma_{a d}$ and χ_{4} or χ_{3}.

The positional analysis of the four bar mechanism with double crank (parallelogram mechanism are excluded) shows that in a kinematic cycle there are intervals where the value of the rotation angle of the driven crank is higher than the value of the rotation angle of the driving crank. This can be used successfully in practical applications.

3. THE ALGORITHM PRESENTATION FOR THE CRANKROCKER FOUR-BAR MECHANISM

It is easy to notice that with a crank-rocker mechanism, fig. 6, the transmission angle has the maximum value when the crank is in extension of the support (position $\mathrm{AB}_{4} \mathrm{C}_{4} \mathrm{D}$) and the minimum value when it takes the position $\mathrm{AB}_{3} \mathrm{C}_{3} \mathrm{D}$.

Taking into consideration the possible critical position of the crank-rocker mechanism, fig. 7, we can notice the position $\mathrm{AB}_{3} \mathrm{C}_{3} \mathrm{D}$, where the transmission angle γ has the minimum value. In this position angle γ_{3} must be equal to $\gamma_{a d}$.

Fig. 6. Four bar crank-rocker mechanism

Fig. 7. The critical synthesis positions

We can also notice that the point B_{3}, where the mobile joint is located, coincides with the instantaneous rotation centre in the relative motion of the elements $A B$ and CD.

Based on the fact that B_{3} coincides with the instantaneous rotation centre, we can write the following relation of the absolute velocities in this point:

$$
\begin{equation*}
a \mathrm{~d} \varphi=(1-a) \mathrm{d} \chi \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{a}{1-a}=\frac{d \chi}{d \varphi}=i_{3} \tag{25}
\end{equation*}
$$

Hence, the relative length of the crank AB is:

$$
\begin{equation*}
a=\frac{i_{3}}{1+i_{3}} \tag{26}
\end{equation*}
$$

The other sides of the mechanism, b and c, are determined from the triangle $B_{3} C_{3} D$, applying the sine theorem:

$$
\begin{align*}
& c=\frac{\sin \left(\chi_{3}-\gamma_{3}\right)}{\left(1+i_{3}\right) \sin \gamma_{3}} \tag{27}\\
& b=\frac{\sin \chi_{3}}{\left(1+i_{3}\right) \sin \gamma_{3}} \tag{28}
\end{align*}
$$

In the limit positions of the crank-rocker mechanism, $\mathrm{AB}_{1} \mathrm{C}_{1} \mathrm{D}$ and $\mathrm{AB}_{2} \mathrm{C}_{2} \mathrm{D}$ (Fig. 7), applying the sine theorem we can write the relations:

$$
\begin{align*}
& b+a=\frac{\sin \chi_{1}}{\sin \gamma_{1}} \tag{29}\\
& b-a=\frac{\sin \chi_{2}}{\sin \gamma_{2}} \tag{30}
\end{align*}
$$

From relations (29) and (30), the following expressions result easily:

$$
\begin{align*}
& a=\frac{1}{2}\left[\frac{\sin \chi_{1}}{\sin \gamma_{1}}-\frac{\sin \chi_{2}}{\sin \gamma_{2}}\right] \tag{31}\\
& b=\frac{1}{2}\left[\frac{\sin \chi_{1}}{\sin \gamma_{1}}+\frac{\sin \chi_{2}}{\sin \gamma_{2}}\right] \tag{32}
\end{align*}
$$

At the same times, applying the sine theorem in the same triangles, taking into accounts that:

$$
\begin{align*}
& \varphi=180^{\circ}-\left(\chi_{1}+\gamma_{1}\right) \tag{33}\\
& \varphi=180^{\circ}-\left(\chi_{2}+\gamma_{2}\right) \tag{34}
\end{align*}
$$

we can write the following relations:
4. in the triangle $\mathrm{AC}_{1} \mathrm{D}$:

$$
\begin{equation*}
\frac{c}{\sin \varphi}=\frac{1}{\sin \gamma_{1}} \tag{35}
\end{equation*}
$$

5. in the triangle $\mathrm{AC}_{2} \mathrm{D}$:

$$
\begin{equation*}
\frac{c}{\sin \varphi}=\frac{1}{\sin \gamma_{2}} \tag{36}
\end{equation*}
$$

From relations (35) and (36), taking into account relations (33) and (34), it results:

$$
\begin{equation*}
c=\frac{\sin \left(\chi_{1}+\gamma_{1}\right)}{\sin \gamma_{1}}=\frac{\sin \left(\gamma_{2}+\chi_{2}\right)}{\sin \gamma_{2}} \tag{37}
\end{equation*}
$$

From the three positions taken into account and considered critical positions $\mathrm{AB}_{1} \mathrm{C}_{1} \mathrm{D}, \mathrm{AB}_{2} \mathrm{C}_{2} \mathrm{D}$ and $\mathrm{AB}_{3} \mathrm{C}_{3} \mathrm{D}$, based on the formulas (26) $\div(37$), the following equalities can be written:
6. for the relative length c, from relations (27) and (37):

$$
\begin{equation*}
\frac{\sin \left(\chi_{1}+\gamma_{1}\right)}{\sin \gamma_{1}}=\frac{\sin \left(\chi_{2}+\gamma_{2}\right)}{\sin \gamma_{2}}=\frac{\sin \left(\chi_{3}+\gamma_{3}\right)}{\left(1+i_{3}\right) \sin \gamma_{3}} \tag{38}
\end{equation*}
$$

7. for the relative length b, from relations (28) and (31):

$$
\begin{equation*}
\frac{1}{2}\left[\frac{\sin \chi_{1}}{\sin \gamma_{1}}+\frac{\sin \chi_{2}}{\sin \gamma_{2}}\right]=\frac{\sin \chi_{3}}{\left(1+i_{3}\right) \sin \gamma_{3}} \tag{39}
\end{equation*}
$$

8. for the relative length a, from relations (26) and (32):

$$
\begin{equation*}
\frac{1}{2}\left[\frac{\sin \chi_{1}}{\sin \gamma_{1}}-\frac{\sin \chi_{2}}{\sin \gamma_{2}}\right]=\frac{i_{3}}{\left(1+i_{3}\right)} \tag{40}
\end{equation*}
$$

Relations (38), (39) and (40) define the relative lengths a, b and c of the four bar crank-rocker mechanism. The rocker maximum oscillation angle $\chi_{M}=\chi_{1}-\chi_{2}$, which is usually prescribed in the design requirements, can also be involved in these relations.

Thus, from the first equality (38), changing the mid-terms among themselves and implying the angle χ_{M}, we obtain:

$$
\begin{equation*}
\frac{\sin \left(\chi_{1}+\gamma_{1}\right)}{\sin \left(\chi_{1}-\chi_{M}+\gamma_{2}\right)}=\frac{\sin \gamma_{1}}{\sin \gamma_{2}} \tag{41}
\end{equation*}
$$

Equality (40) can be written under the form:

$$
\begin{equation*}
\frac{1}{i_{3}}=\frac{2}{\frac{\sin \chi_{1}}{\sin \gamma_{1}}-\frac{\sin \left(\chi_{1}-\chi_{M}\right)}{\sin \gamma_{2}}}-1 \tag{42}
\end{equation*}
$$

Equality (39), referring to the relative length b, can be arranged under the form:

$$
\begin{equation*}
\sin \chi_{3}=\frac{1+i_{3}}{2}\left[\frac{\sin \chi_{1}}{\sin \gamma_{1}}+\frac{\sin \left(\chi_{1}-\chi_{M}\right)}{\sin \gamma_{2}}\right] \sin \gamma_{3} \tag{43}
\end{equation*}
$$

Also, from the equality between the first and the third ratio of the relations (38), it results:

$$
\begin{equation*}
\cot \gamma_{1}=\frac{\sin \left(\chi_{3}-\gamma_{3}\right)}{\left(1+i_{3}\right) \sin \gamma_{3} \sin \chi_{1}}-\cot g \chi_{1} \tag{44}
\end{equation*}
$$

It is known that under design conditions, besides the minimum transmission angle $\gamma_{\min }$, the rocker maximum oscillation angle χ_{M} and the variation coefficient k of the average velocities at the advance and return stroke are imposed.

Writing down with θ the angle between the extreme positions $B_{1} C_{1}$ and $B_{2} C_{2}$ of the connecting rod BC , fig.7, corresponding to the extreme positions DC_{1} and DC_{2} of the rocker DC , the following two significant relations regarding the coefficient k can be written:

$$
\begin{equation*}
k=\frac{180^{\circ}+\theta}{180-\theta} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta=180^{\circ} \frac{k-1}{k+1} \tag{46}
\end{equation*}
$$

From fig. 7 it is easy to see the following equality:

$$
\begin{equation*}
\chi_{2}+\gamma_{2}=\chi_{1}+\gamma_{1}-\theta \tag{47}
\end{equation*}
$$

from which it results:

$$
\begin{equation*}
\gamma_{2}=\chi_{1}+\gamma_{1}-\theta-\left(\chi_{1}-\chi_{M}\right)=\chi_{1}+\chi_{M}-\theta \tag{48}
\end{equation*}
$$

Referring to the angle γ_{3}, it is known that it is the smallest transmission angle and consequently it should have the allowable value $\gamma_{3}=\gamma_{a d}$.

The relations (41), (42), (43) and (44) make up a system of trigonometric equations with the unknowns $\chi_{1}, \gamma_{1}, \chi_{3}$ and i_{3}. Solving it can be done easily in the following sequence:
9. θ is calculated with the relation (46);
10. an arbitrary value of the angle $\gamma_{1}>\gamma_{a d}$ is chosen;
11. γ_{2} is calculated with the relation (48);
12. γ_{1} is calculated with relation (41);
13. i_{3} is calculated with relation (42);
14. χ_{3} is calculated with relation (43);
15. γ_{1}, which we write down with $\gamma_{1}{ }^{*}$, is calculated with relation (44).

In most cases, the value of the angle $\gamma_{1}{ }^{*}$ does not coincide with the initial chosen value γ_{1}. That is why a new value γ_{1} will be chosen and the calculations will be repeated.

A new value $\gamma_{1}{ }^{*}$ will be obtained, which will be compared with the initial chosen value γ_{1}. The (increasing or decreasing) trends of the values $\gamma_{1}{ }^{*}$ will be seen in relation with the initially chosen value, repeating the calculations for other values till the condition $\gamma_{1}{ }^{*}=\gamma_{1}$ is fulfilled.

3.1. Example of calculation

Determine the values of the relative lengths a, b and c of the sides of a four bar crank rocker to satisfy the following demands:

- the rocker oscillation angle, $\chi_{M}=30^{\circ}$;
- the variation coefficient $k=1.25$;
- the allowable minimum value of the transmission angle, $\gamma_{a d}=45^{\circ}$.

3.1.1. Solution

1. $\gamma_{1}=70^{0}>\gamma_{a d}=45^{0}$ is chosen.
2. θ is calculated with relation (46): $\theta=20^{\circ}$;
3. γ_{2} is determined with relation (48): $\gamma_{2}=80^{\circ}$;
4. The rocker positioning angle χ_{1} is calculated in the mechanism $\mathrm{AB}_{1} \mathrm{C}_{1} \mathrm{D}$, limiting position with the following formula deduced from relation (41):

$$
\chi_{1}=\operatorname{arctg}\left[\frac{\sin \gamma_{1}\left(\sin \gamma_{2}+\sin \left(\chi_{M}+\gamma_{2}\right)\right)}{\cos \gamma_{1} \sin \gamma_{2}-\sin \gamma_{1} \cos \left(\chi_{M}+\gamma_{2}\right)}\right]
$$

and then, with relation $\chi_{1}-\chi_{2}=\chi_{M}$, the rocker positioning angle χ_{2} is calculated in the limiting position of the mechanism $\mathrm{AB}_{2} \mathrm{C}_{2} \mathrm{D}, \chi_{2}=\chi_{1}-\chi_{M}$.

For the present case it results $\chi_{1}=37^{0}$ and $\chi_{2}=7^{0}$.
5. The parameters i_{3}, χ_{3} and $\gamma_{1}{ }^{*}$ are calculated with formulas (42), (43) and (44), considering $\gamma_{3}=\gamma_{a d}$.

For the present case it results: $i_{3}=0.35 ; \chi_{3}=22^{0}$ and $\gamma_{1}{ }^{*}=76^{0}$.
6. As the value found for $\gamma_{1}{ }^{*}=76^{0}$ does not coincide with the chosen value $\gamma_{1}=70^{\circ}$ at point 1 , the calculations should be repeated in order to find a new value γ_{1}.
7. In order to decrease the number of these repetitions, the graphics of the functions $\chi_{1}=\chi_{1}\left(\gamma_{1}\right)$ and $\gamma_{1}{ }^{*}=\gamma_{1}{ }^{*}\left(\chi_{1}\right)$ are plotted and their intersection point is determined. For the present problem we obtain the values: $\gamma_{1}=60^{\circ}$ and $\chi_{1}=53^{0}$.
8. The geometric parameters searched a, b and c are calculated with formulas (26), (27) and (28).

For the present case: $a=0.25, b=0.66, c=1.05$.

1. THE SYNTHESIS OF THE CRANK-SLIDER MECHANISM

In the case of the crank-slider mechanism as in the case of the four-bar mechanism it is required that the magnitude of the transmission angle should not be smaller than the allowable value. Besides, in most cases the mechanism should have a crank.

For the case where $A B$ is the driving element, the mechanism transmission angle is the angle γ formed between the velocity direction of point $C\left(v_{C}\right)$ and the
direction of the relative velocity $\left(v_{C B}\right)$.
From fig. 8 it results:

$$
\begin{equation*}
R \sin \left(\varphi_{0}+\varphi\right)+a=\sin \left(90^{\circ}-\gamma\right) \tag{49}
\end{equation*}
$$

From relation (49), knowing that $-1 \leq \sin \left(\varphi_{0}+\varphi\right) \leq 1$, it results:
a) for $a>0$:

$$
\begin{equation*}
\cos \gamma_{\min }=\frac{a+1}{l} \quad \text { and } \quad \cos \gamma_{\max }=\frac{a-1}{l} \tag{50}
\end{equation*}
$$

b) for $a<0$:

$$
\begin{equation*}
\cos \gamma_{\min }=\frac{a+1}{l} \quad \text { and } \quad \cos \gamma_{\max }=\frac{1-a}{l} \tag{51}
\end{equation*}
$$

Fig. 8. Transmission angle

Fig. 9. The crank condition

Writing down the value of the allowable transmission angle with $\gamma_{a d}$ and knowing that the sign of the cosine function does not count, we can write:

$$
\begin{equation*}
l \cos \gamma_{a d} \leq a+1 \tag{52}
\end{equation*}
$$

In order to have a crank, the condition has to be fulfilled (fig. 9):

$$
\begin{equation*}
a<l-1 \tag{53}
\end{equation*}
$$

If condition (53) is not fulfilled, the mechanism will be of the slider-rocker type.

From inequalities (52) and (53), it results that for the slider-crank mechanism to have crank and corresponding transmission angle the inequalities have to be met:

$$
\begin{equation*}
l \cos \gamma_{a d} \leq a+1<l \tag{54}
\end{equation*}
$$

The synthesis case depending on the average velocity variation coefficient and the transmission angle

In the following pages we present the algorithm for the synthesis of the crankslider mechanism depending on the variation coefficient of the sliding block average velocities and the transmission angle magnitude.

Fig. 10. Crank-slider mechanism

Suck problems arise with working mechanisms where both at the advance stroke and at the return stroke a force must be transmitted to the slider (for example, reciprocating pumps).

The problem is solved, taking into account three positions of the mechanism (fig.10): $\mathrm{AB}_{1} \mathrm{C}_{1}, \mathrm{AB}_{2} \mathrm{C}_{2}, \mathrm{AB}_{3} \mathrm{C}_{3}$.

We notice with θ the angle between extreme positions of the coupler and with γ the transmission angle. The distance $\mathrm{A}_{0} \mathrm{C}$ is written down with X and it is considered that $r=1$. From figure 10 it results:

$$
\begin{equation*}
a=X_{1} \operatorname{ctg} \gamma_{1}=X_{2} \operatorname{ctg} \gamma_{2}=X_{3} \operatorname{ctg} \gamma_{3}-1 \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\frac{X_{1}}{\sin \gamma_{1}}+1=\frac{X_{2}}{\sin \gamma_{2}}-1=\frac{X_{3}}{\sin \gamma_{3}} \tag{56}
\end{equation*}
$$

Removing X_{3} from (55) and (56) we get:

$$
\begin{equation*}
X_{1}=\frac{1-\cos \gamma_{3}}{\frac{\cos \gamma_{3}}{\sin \gamma_{1}}-\operatorname{ctg} \gamma_{1}} \tag{57}
\end{equation*}
$$

Removing X_{2} from (56) and (55) and taking also into account that

$$
\begin{equation*}
\gamma_{2}=\gamma_{1}+\theta \tag{58}
\end{equation*}
$$

after elementary transformations, we obtain:

$$
\begin{equation*}
X_{1}=\frac{2}{\frac{\cot \gamma_{1}}{\cos \left(\gamma_{1}+\theta\right)}-\frac{1}{\sin \gamma_{1}}} \tag{59}
\end{equation*}
$$

From relations (57) and (59) it is obtained:

$$
\begin{equation*}
\frac{\cos \gamma_{1}}{\cos \left(\gamma_{1}+\theta\right)}+2 \frac{\cos \gamma_{1}}{1-\cos \gamma_{3}}=1+2 \frac{\cos \gamma_{3}}{1-\cos \gamma_{3}} \tag{60}
\end{equation*}
$$

As the synthesis conditions require that the minimum transmission angle (angle γ_{3}) should be equal with $\gamma_{a d}$ and the angle θ is found from the variation coefficient of average velocities at the advance stroke and at the return stroke (known), relation (46), the value of the angle γ_{1} can be found with relation (60).

Further on, the value of X_{1} is found from equation (59) or equation (57). Then the unknowns a and l are found by means of the equations (55) and (56).

From equation (55), taking into account relation (58), we get:

$$
\begin{equation*}
X_{2}=a \operatorname{tg}\left(\gamma_{1}+\theta\right) \tag{61}
\end{equation*}
$$

The maximum slider displacement results:

$$
\begin{equation*}
H=X_{2}-X_{1} \tag{62}
\end{equation*}
$$

4.1.1. Calculation example

Let us determine the a and l parameters of a crank-slider mechanism and the entire sliding block stroke for $k=1.22$ and $\gamma_{3}=\gamma_{a d}=30^{\circ}$.

4.1.1.1. Solution

From relation (46) we get:

$$
\theta=180^{0} \frac{1.22-1}{1.22+1}=17.8^{0}
$$

From relation (60) it results $\gamma_{1} \cong 70^{0}$. From relation (57) it results $X_{1}=0.33$. Then, from formulae (55) and (56) it results: $a=0.09$ and $l=1.26$. From relation (61) we get $X_{2}=2.2$. From relation (62) it results $H=1.97$.

Calculation of the Mechanism Parameters when the Condition is Imposed that the Transmission Angle at the Advance Stroke Should Have a Value Equal to the Allowable Value

The advance stroke (fig. 11) begins in the position AB_{1} and lasts up to position AB_{2} in the direction of the arrow.

Fig. 11. Advance stroke

At the beginning of the stroke, the transmission angle is $\gamma=\gamma_{1}$. As it results from equation (49) on the interval $\varphi_{1}=\varphi \leq 270^{\circ}$, the angle γ increases while on the interval $270^{\circ}<\varphi<\varphi_{2}$ the angle γ decreases, reaching the value $\gamma_{2}>\gamma_{1}$ at the end of the active stroke. Therefore, the lowest value of the angle γ is γ_{1} and consequently angle $\gamma_{1}=\gamma_{a d}$. Taking into account these remarks, the problem under consideration will be solved for two limit position: $\mathrm{AB}_{1} \mathrm{C}_{1}$ and $\mathrm{AB}_{2} \mathrm{C}_{2}$, taking $\gamma_{1}=\gamma_{a d}$. To this end, the value X_{1} is calculated with relation (60) and then the parameters a and l with relations (55) and (56).

We determine X_{2} with formula (61) and then the sliding block stroke is found with relation (62).

4.2.1. Calculation Example

Let us determine a and l for $k=1.4$ and $\gamma_{1}=\gamma_{a d}=45^{0}$ at the beginning of the active stroke.

4.2.1.1. Solution

With relations (46), (59), (55), (56), (61), (62) we find $\theta=30^{\circ} ; X_{3}=0.81$; $a=0.81 ; l=2.14 ; X_{2}=3 ; H=2.19$.

Calculation of the mechanism parameters under the condition the transmission angle at the beginning of the working stroke should be equal to the allowable one

This case occurs when the working stroke is part of the sliding block advance stroke. The condition is set that during the working stroke the minimum transmission angle should not be smaller than the allowable angle.

From those shown above regarding the character of the transmission angle value variation during the advance stroke, it results that if the beginning of the working stroke coincides with the position $\mathrm{AB}_{3} \mathrm{C}_{3}$ (fig.12), then the angle γ_{3} has to be equal with $\gamma_{a d}$.

Fig. 12. The beginning of the working stroke

The transmission angles in all the other positions of the working stroke are greater than $\gamma_{a d}$. Therefore, the calculation positions in this case are: $\mathrm{AB}_{1} \mathrm{C}_{1} ; \mathrm{AB}_{2} \mathrm{C}_{2}$; $\mathrm{AB}_{3} \mathrm{C}_{3}$. Besides, k and γ as well as the ratio between no-load run period at the advance stroke and the run period at advance (the corresponding sliding block displacement can also be considered) are known. This ratio is:

$$
\begin{equation*}
p=\frac{X_{3}-X_{1}}{X_{2}-X_{1}} \tag{63}
\end{equation*}
$$

therefore

$$
\begin{equation*}
X_{3}=(1-p) X_{1}=p X_{2} \tag{64}
\end{equation*}
$$

If the connecting rod $B C$ in fig. 13 is lengthened until it crosses $A_{0} A$ in C_{1}, the triangle $\mathrm{AC}_{1} \mathrm{~B}$ can be considered to be the plane of mechanism velocities with the pole in A and rotated 90° counterclockwise.

Fig. 13. The plane of mechanism velocities

Applying the sine theorem in this triangle, we obtain:

$$
\begin{equation*}
\frac{X^{\prime}}{\sin \left(90^{\circ}+\varphi-\gamma\right)}=\frac{1}{\sin \gamma}, \quad \text { i.e. } \quad X^{\prime}=\frac{\cos (\varphi-\gamma)}{\sin \gamma} \tag{65}
\end{equation*}
$$

From the triangle $\mathrm{A}_{0} \mathrm{C}_{1} \mathrm{C}$ it results:

$$
\begin{equation*}
a+X^{\prime}=X \cot \gamma \text { that is } a=X \cot \gamma-X^{\prime} \tag{66}
\end{equation*}
$$

By projecting the contour $A_{0} A B C$ on the direction $A_{0} C_{1}$ we obtain:

$$
\begin{equation*}
l=\frac{X-\gamma \cos \varphi}{\sin \gamma} \tag{67}
\end{equation*}
$$

Taking into account relations (64) and (65), relation (66) becomes:

$$
\begin{equation*}
a=\left[(1-p) X_{1}+p X_{2}\right] \operatorname{ctg} \gamma_{3}-\frac{\cos \left(\varphi_{3}-\gamma_{3}\right)}{\sin \gamma_{3}} \tag{68}
\end{equation*}
$$

In the same way, relation (67) becomes:

$$
\begin{equation*}
l=\frac{(1-p) X_{1}+p X_{2}-r \cos \varphi_{3}}{\sin \gamma_{3}} \tag{69}
\end{equation*}
$$

But taking into account (58), from relation (56) we get:

$$
\begin{equation*}
I=\frac{X_{2}}{\sin \left(\gamma_{1}+\theta\right)}-1=\frac{X_{1}}{\sin \gamma_{1}}+1 \tag{70}
\end{equation*}
$$

Taking into account relation (55), equation (61) can be written:

$$
\begin{equation*}
X_{2}=X_{1} \cot \gamma_{1} \operatorname{tg}\left(\gamma_{1}+\theta\right) \tag{71}
\end{equation*}
$$

By associating relations (55) and (68) we get:

$$
\begin{equation*}
X_{1} \operatorname{ctg} \gamma_{1}=\left[(1-p) X_{1}+p X_{2}\right] \operatorname{ctg} \gamma_{3}-\frac{\cos \left(\varphi_{3}-\gamma_{3}\right)}{\sin \gamma_{3}} \tag{72}
\end{equation*}
$$

By associating relations (69) and (70) it results:

$$
\begin{equation*}
\frac{X_{1}}{\sin \gamma_{1}}+1=\frac{(1-p) X_{1}+p X_{2}-\cos \varphi_{3}}{\sin \gamma_{3}} \tag{73}
\end{equation*}
$$

By associating relations (71), (72), (73) and (59), a four equation system with four unknowns: X_{1}, X_{2}, γ_{1} and φ_{3} is obtained.

4.3.1. Sequence of calculation

The following steps are suggested:

1. A value is chosen for $\gamma_{1}<\gamma_{3}=\gamma_{a d}$.
2. X_{1} and X_{2} are found with relations (59) and (71).
3. From relations (72) and (73) we can write:

$$
\begin{gather*}
\cos \left(\varphi_{3}-\gamma_{3}\right)=\left[(1-p) X_{1}+p X_{2}\right] \cos \gamma_{3}-X_{1} \cot \gamma_{1} \sin \gamma_{3} \tag{73}\\
\cos \varphi_{3}=(1-p) X_{1}+p X_{2}-\left(\frac{X_{1}}{\sin \gamma_{1}}+1\right) \sin \gamma_{3} \tag{74}
\end{gather*}
$$

Equations (74) and (75) will have one and the same solution φ_{3} only for a certain value of γ_{1}. This checking is also the appraisal criterion if the value chosen for γ_{1} is the suitable one.

Let us suppose that after several tests a value has been established for γ_{1} for which the two equations (74) and (75) have the same solution φ_{3}.
4. X_{1} is found with relation (59) while X_{2} is found with relation (71).
5. Stroke H is defined with relation (62).
6. The unknown parameters a and l are found with relations (55) and (56).

In case we cannot find the suitable value for γ_{1} by the tests done so that equations (74) and (75) should yield one and the same value for φ_{3}, that is the synthesis conditions (in the present case values k, p and γ_{3}) cannot be met, the variation coefficient value of the average velocity k will be reduced or the value p will be modified.

5. DESIGN OF AN INVERTED SLIDE-CRANK MECHANISM: FOUR-BAR OSCILLATING-SLOTTED-LINK MECHANISM

5.1. Geometric synthesis

It is known that the process of fixing different links of a chain to create different mechanisms is called kinematics inversion.

The four-bar mechanisms are the four inversions of the four-bar chain and the slider-crank mechanisms are two inversions of the slider-crank mechanisms chain; three-bar and four-bar rotating when the lengths of the links comply with the condition $\mathrm{A}_{0} \mathrm{~A}>\mathrm{A}_{0} \mathrm{~B}_{0}$ respectively.

An inverted slider-crank mechanism is shown in figure 14. As the input crank $\mathrm{A}_{0} \mathrm{~A}$ makes a complete revolution, the crank $\mathrm{B}_{0} \mathrm{~B}^{\prime}$, which is rigidly connected to the guide of the slider, oscillates through an angle. This output angle of oscillation can be determined by line $B_{0} B_{1}$, which is perpendicular to the guide. $B_{0} B$ is called the eccentricity of the inverted slider-crank mechanism. The point B_{1} is chosen for the suitable design of the „hardware", but point B is the point of significance. Figure 14 presents two extreme positions $\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~B}_{1} \mathrm{~B}_{0}$ and $\mathrm{A}_{0} \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{~B}_{0}$ of the inverted slider-crank mechanism, and points B_{1} and B_{2} are the extreme positions of the point B. The input and output crank angles between the two extreme positions are φ and χ, respectively. The transmission angle γ is also shown.

Fig. 14. Inverted slider-crank mechanism

Note $\left\langle\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~B}_{1}=\left\langle\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{~B}_{0}=\left\langle\mathrm{A}_{0} \mathrm{~A}_{2} \mathrm{~B}_{2}=\left\langle\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{~B}_{0}=90^{\circ}\right.\right.\right.\right.$.
Extend line $A_{2} B_{2}$ intersecting $A_{1} B_{1}$ at point D. Since

$$
\begin{gathered}
\left\langle\mathrm{A}_{1} \mathrm{~A}_{0} \mathrm{~A}_{2}+\left\langle\mathrm{A}_{1} \mathrm{DA}_{2}=180^{0}\right.\right. \\
\left\langle\mathrm{B}_{1} \mathrm{~B}_{0} \mathrm{~B}_{2}+\left\langle\mathrm{B}_{1} \mathrm{DB}_{2}=180^{0}\right.\right. \\
\left\langle\mathrm{B}_{1} \mathrm{DB}_{2}+\left\langle\mathrm{A}_{1} \mathrm{DA}_{2}=180^{\circ}\right.\right.
\end{gathered}
$$

then

$$
\begin{align*}
& \left\langle\mathrm{A}_{1} \mathrm{DA}_{2}=\left\langle\mathrm{B}_{1} \mathrm{~B}_{0} \mathrm{~B}_{2}=\chi_{12}\right.\right. \tag{76}\\
& \quad \varphi_{12}+\chi_{12}=180^{0} \tag{77}
\end{align*}
$$

Again, since right triangle $\mathrm{B}_{0} \mathrm{~B}_{1} \mathrm{D} \equiv$ right triangle $\mathrm{B}_{0} \mathrm{~B}_{2} \mathrm{D}$ and right triangle $\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{D} \equiv$ right triangle $\mathrm{A}_{0} \mathrm{~A}_{2} \mathrm{D}$, then

$$
\begin{gathered}
\left\langle\mathrm{A}_{1} \mathrm{DA}_{0}=\left\langle\mathrm{A}_{2} \mathrm{DA}_{0}\right.\right. \\
\left\langle\mathrm{B}_{1} \mathrm{DB}_{0}=\left\langle\mathrm{B}_{2} \mathrm{DB}_{0}\right.\right.
\end{gathered}
$$

and therefore

$$
\begin{equation*}
\left\langle\mathrm{A}_{0} \mathrm{DB}_{0}=90^{\circ}\right. \tag{78}
\end{equation*}
$$

The relationships (76), (77) and (78) establish the foundation for the design an inverted slider-crank mechanism to match prescribed dead-center positions. Two examples are used for illustration.

5.1.1. Example 1

Design an inverted slider-crank mechanism to meet the following requirements:

1. The length d of the fixed link $\mathrm{A}_{0} \mathrm{~B}_{0}$ (fig.15).
2. Input crank length a.
3. The input crank angles φ_{12} between the two extreme positions.

5.1.1.1. Solution

1. At fixed pivot A_{0}, construct an isosceles triangle $A_{1} A_{0} A_{2}$, where $A_{0} A_{1}=$ $\mathrm{A}_{0} \mathrm{~A}_{2}=a$ and $\left\langle\mathrm{A}_{1} \mathrm{~A}_{0} \mathrm{~A}_{2}=\varphi_{12}\right.$ (fig.15)
2. Erect lines $A_{1} D$ and $A_{2} D$ perpendicular to $A_{0} A_{1}$ and $A_{0} A_{2}$, respectively.
3. Join $A_{0} D$ and erect D_{0} perpendicular to $A_{0} D . B_{0}$ is the locus of the fixed pivot B_{0} according to equation (78).
4. With A_{0} as the center and length d as radius, strike a circular arc intersecting line DB_{0} at B_{0}. Thus, B_{0} is the fixed pivot.
5. The eccentricity e of the inverted slider-crank is the perpendicular distance from the fixed pivot B_{0} to $\mathrm{A}_{1} \mathrm{D}$ (fig.15).
\qquad
d
\qquad
\qquad

(a)

Fig. 15. Design of an inverted slider-crank mechanism

5.1.2. Example 2

Design an inverted slider-crank mechanism to meet the following requirements:

1. The eccentricity e of an inverted slider-crank mechanism (fig.16).
2. The output crank angle χ_{12} between the two extreme positions.
3. The crank length a.

(a)

(b)

Fig. 16. Design of an inverted slider-crank mechanism

5.1.2.1. Solution

1. Since χ_{12} is given, φ_{12} can be found from the relationship of an inverted slider-crank mechanism: $\chi_{12}+\varphi_{12}=180^{\circ}$. Thus, following the preceding design procedure, the point D can be located (fig.16).
2. Draw two lines l_{1} and l_{2} parallel to lines $\mathrm{A}_{1} \mathrm{D}$ and $\mathrm{A}_{2} \mathrm{D}$ at a distance e.
3. The intersecting point of lines l_{1} and l_{2} is the fixed pivot B_{0} (fig.16).

5.2. Analytical synthesis

In fig. 17 is shown an inverted slider-crank mechanism (four-bar-oscillatingslotted link mechanism) for analytic synthesis. With the notations in fig. 17 we can write the vectorial equation:

$$
\begin{equation*}
\overline{B C}=\bar{e}+\overline{1}+\bar{a} \tag{80}
\end{equation*}
$$

Squaring both members of the equation (80) and taking into account that:

$$
\begin{equation*}
\mathrm{BC}^{2}+a^{2}=t^{2}=a^{2}+1-2 a \cos \left(\varphi_{0}+\varphi\right) \tag{81}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
e-a \cos \left(\psi^{+} \psi_{0}-\varphi_{0}-\varphi\right)+\cos \left(\psi^{+} \psi_{0}\right)=0 \tag{82}
\end{equation*}
$$

From equation (82) it results that the four-bar-oscillating-slotted-link mechanism is dependent on four parameters, namely: a, e, φ_{0} and ψ_{0}.
Applying the cosine theorem in the triangle ABD , the distance t is obtained:

$$
\begin{equation*}
t=\sqrt{a^{2}+1-2 a \cos \left(\varphi+\varphi_{0}\right)} \tag{83}
\end{equation*}
$$

In the case the element AB is the driving element, the transmission angle is the angle γ formed between the direction of the absolute velocity of the point B (perpendicular on t) and the direction of the relative velocity (parallel to the gliding direction of the gliding block BC). Rotating the sides of this angle clockwise, the angle formed between a perpendicular direction on the gliding direction BC and the direction BD is obtained. From fig. 17 it results:

$$
\begin{equation*}
\cos \gamma=\frac{e}{t} \tag{84}
\end{equation*}
$$

Taking into account relation (83), we shall obtain the expression of the
transmission angle γ :

$$
\begin{equation*}
\cos \gamma=\frac{e}{\sqrt{a^{2}+1-2 a \cos \left(\varphi+\varphi_{0}\right)}} \tag{85}
\end{equation*}
$$

From relation (85), we infer that $\gamma=\gamma_{\text {min }}$ for $\varphi+\varphi_{0}=0$:

$$
\begin{equation*}
\cos \gamma_{\min }=\frac{e}{|a-1|} \tag{86}
\end{equation*}
$$

Therefore, the condition of the transmission angle van is given by relation:

$$
\begin{equation*}
|a-1| \cos \gamma_{a d} \geq e \tag{87}
\end{equation*}
$$

From fig. 17 it results that mechanism has rotating crank lever if

$$
\begin{equation*}
a>1+e \tag{88}
\end{equation*}
$$

From inequalities (87) and (88) we infer that for $a>1$ and fulfilling condition (87), the four-bar rotating-slotted-link mechanism is obtained.

If

$$
\begin{equation*}
a<1-e \tag{89}
\end{equation*}
$$

we shall have a four-bar oscillating-slotted link mechanism.
In order to fulfill the condition (87), it is necessary to fulfill the following inequality:

$$
\begin{equation*}
a \leq 1-\frac{e}{\cos \gamma_{a d}} \tag{90}
\end{equation*}
$$

which comprises also relation (89).
For the calculation of all the four parameters (a, e, φ_{0} and ψ_{0}) of an inverted slider-crank mechanism, the position equation (82) is written under the form of the following interpolation polynomial:

$$
\begin{equation*}
\mathrm{p}_{0}+\mathrm{f}_{0}(\varphi)+\mathrm{p}_{1} \mathrm{f}_{1}(\varphi)+\mathrm{p}_{2} \mathrm{f}_{2}(\varphi)+\mathrm{p}_{3} \mathrm{f}_{3}(\varphi)=0 \tag{91}
\end{equation*}
$$

where

$$
\left\{\begin{array} { l }
{ p _ { 0 } = \frac { e } { \operatorname { c o s } \psi _ { 0 } } } \tag{92}\\
{ p _ { 1 } = a (\operatorname { t g } \psi _ { 0 } \operatorname { c o s } \varphi _ { 0 } - \operatorname { s i n } \varphi _ { 0 }) } \\
{ p _ { 2 } = a (\operatorname { t g } \psi _ { 0 } \operatorname { s i n } \varphi _ { 0 } + \operatorname { c o s } \varphi _ { 0 }) } \\
{ p _ { 3 } = \operatorname { t g } \psi _ { 0 } }
\end{array} \quad \left\{\begin{array}{l}
f_{0}(\varphi)=\cos \psi \\
f_{1}(\varphi)=\sin (\psi-\varphi) \\
f_{2}(\varphi)=-\cos (\psi-\varphi) \\
f_{3}(\varphi)=-\sin \psi
\end{array}\right.\right.
$$

Differentiating relation (91) successively in relation to φ, is obtained:

$$
\begin{equation*}
p_{1}+\frac{1}{f_{1}^{\prime}(\varphi)}\left[f_{0}^{\prime}(\varphi)+p_{2} f_{2}^{\prime}(\varphi)+p_{3} f_{3}^{\prime}(\varphi)\right]=0 \tag{93}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}-\frac{1}{f_{5}(\varphi)}\left[f_{4}(\varphi)+p_{3} f_{3}(\varphi)\right]=0 \tag{94}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}(\varphi)=f_{r}^{\prime \prime}(\varphi) f_{1}^{\prime}(\varphi)-f_{r}^{\prime}(\varphi) f_{1}^{\prime \prime}(\varphi), \frac{k|4| 5|6|}{r|0| 2|3|} \tag{95}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{3}=\frac{f_{4}^{\prime}(\varphi) f_{5}(\varphi)-f_{4}(\varphi) f_{5}^{\prime}(\varphi)}{f_{6}^{\prime}(\varphi) f_{5}(\varphi)-f_{6}(\varphi) f_{5}^{\prime}(\varphi)} \tag{96}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{k}^{\prime}(\varphi)=f_{r}^{\prime \prime \prime}(\varphi) f_{1}^{\prime}(\varphi)-f_{r}^{\prime}(\varphi) f_{1}^{\prime \prime \prime}(\varphi), \frac{k|4| 5|6|}{r|0| 2|3|} \tag{97}
\end{equation*}
$$

are the derivatives of the functions $f(\varphi)$ (relations (92)).
The unknown parameters of the mechanism are determined with the formulae:

$$
\left\{\begin{array}{l}
\operatorname{tg} \psi_{0}=p_{3} \tag{98}\\
e=p_{0} \cos \psi_{0} \\
\operatorname{tg}\left(\varphi_{0}-\psi_{0}\right)=\frac{p_{1}}{p_{2}} \\
a=\frac{p_{2}}{\operatorname{tg} \varphi_{0} \sin \varphi_{0}+\cos \varphi_{0}}
\end{array}\right.
$$

6. SYNTHESIS OF THE SLOTTED-CRANK-TANGENTGENERATOR MECHANISM

This mechanism is shown in figure 18. The driving element is the element AB. We can write with the notations in figure 18:

$$
\begin{equation*}
h+s-e \operatorname{tg}\left(\varphi_{0}+\varphi\right)=0 \tag{99}
\end{equation*}
$$

The mechanism has three parameters: e, h and φ_{0}. For determining the three parameters, the equation (99) can be written under the form of the following interpolation polynom:

$$
\begin{equation*}
p_{0}+f_{0}(\varphi)+p_{1} f_{1}(\varphi)+p_{2} f_{2}(\varphi)+p_{3} f_{3}(\varphi)=0 \tag{100}
\end{equation*}
$$

where

$$
\left\{\begin{array} { l }
{ p _ { 0 } = \operatorname { e t g } \varphi _ { 0 } - h } \tag{101}\\
{ p _ { 1 } = e + h \operatorname { t g } \varphi _ { 0 } } \\
{ p _ { 2 } = \operatorname { t g } \varphi _ { 0 } }
\end{array} \quad \left\{\begin{array}{l}
f_{0}(\varphi)=-s \\
f_{1}(\varphi)=\operatorname{tg} \varphi \\
f_{2}(\varphi)=\operatorname{stg} \varphi
\end{array}\right.\right.
$$

The coefficients p_{0}, p_{1} and p_{2} can be determined with the relations:

$$
\begin{equation*}
p_{2}=-\frac{f_{3}(\varphi)}{f_{4}(\varphi)} \tag{102}
\end{equation*}
$$

Fig. 18. Slotted-Link-Tangent Generator Mechanism
where

$$
\begin{gather*}
f_{k}(\varphi)=f_{r}^{\prime \prime}(\varphi) f_{1}^{\prime}(\varphi)-f_{r}^{\prime}(\varphi) f_{1}^{\prime \prime}(\varphi), \frac{k|3| 4}{r|0| 2} \tag{103}\\
p_{1}=-\frac{1}{f_{1}^{\prime}(\varphi)}\left[f_{0}^{\prime}(\varphi)+p_{2} f_{2}^{\prime}(\varphi)\right] \tag{104}
\end{gather*}
$$

and p_{0} is obtained from relation (100).
In these relations, the derivatives of the functions $f(\varphi)$ have the form:

$$
\left\{\begin{array}{l}
f_{0}^{\prime}(\varphi)=s^{\prime} \tag{105}\\
f_{0}^{\prime \prime}(\varphi)=s^{\prime \prime} \\
f_{1}^{\prime}(\varphi)=\frac{1}{\cos ^{2} \varphi} \\
f_{1}^{\prime \prime}(\varphi)=-2 f_{1}(\varphi) f_{1}^{\prime}(\varphi) \\
f_{2}^{\prime}(\varphi)=s^{\prime} f_{1}(\varphi)-s f_{1}^{\prime}(\varphi) \\
f_{2}^{\prime \prime}(\varphi)=s^{\prime \prime} f_{1}^{\prime}(\varphi)-s f_{1}^{\prime \prime}(\varphi)
\end{array}\right.
$$

The transmission angle results from relation:

$$
\begin{equation*}
\operatorname{ctg} \gamma=\frac{h+s}{e} \tag{106}
\end{equation*}
$$

Therefore, in order to satisfy the condition of the minimum transmission angle, the relation must be fulfilled:

$$
\begin{equation*}
h+s_{\max } \leq e \cot \gamma_{a d} \tag{107}
\end{equation*}
$$

where $s_{\max }$ is the maximum displacement a of the driven element, $\gamma_{a d}$ the allowable transmission angle, h the distance from the reference angle to the initial position of the sliding block B.

7. CONCLUSIONS

From the previous discussion it is understood that $\gamma_{\min }$ should be equal to or larger than 40° or 45^{0} in order to have effective force transmission on the working element. The examples shown above are simple ones.

For more complicated problems, such as linkage chains and adjustable linkages, the designer should sketch several possible types of mechanisms and then explore some approximate dimensional solutions for each mechanism. This process will soon rule out impractical mechanisms due to unfavorable minimum transmission angle. After he decides on one particular mechanism, several trials of the dimensions of certain links are usually necessary to yield a solution with the maximum $\gamma_{\min }$. This solution is the optimum design from the transmission angle standpoint.

BIBLIOGRAPHY:

[1]. Artobolevsky I.I., Mechanisms in Modern Engineering Design, vol.II, Mir Publishers, Moscow.
[2]. Beleţki V.Ia., Rasciot mechanizmov maşin avtomatov piscevâh proizvodstvo, Vâşa Şcola, Kiev, 1974.
[3]. Cerudinov S.A., Sintez ploskih sarniroriciajnîh mehanizmov, Academia de Ştiinţe a U.R.S.S., Moscova, 1959.
[4]. Hartenberg R.S., Denavit I., Kinematic Synthesis of linkages, McGraw-Hill Series in Mechanical Engineering, New York.
[5]. Tao C.D., Applied Linkage Synthesis, Addison-Wesley Publishing Company, Inc. , 1964.
[6]. Zamfir V., Mecanisme (note de curs). Sinteza mecanismelor generatoare de funcţii, Fascicula 4, Litografia Institutului de Mine, Petroşani, 1977.
[7]. Zamfir V., Albăstroiu P., Mecanisme şi organe de maşini. Partea I, Mecanisme, Litografia Institutului de Mine, Petroşani, 1975.

[^0]: ${ }^{1}$ Professor, Eng. Ph.D., at University of Petroşani, vzamfir@upet.ro
 ${ }^{2}$ Asisst.Prof., Eng. Ph.D., at "Spiru Haret" University, Bucharest

