

 Annals of the University of Petroşani, Economics, 9(2), 2009, 203-208 203

DISTRIBUTED DATABASES MANAGEMENT USING
REMOTE ACCESS METHOD

MIRCEA PETRINI *

ABSTACT: Because of the formidable obstacles to realizing the ideal distributed
database, DBMS vendors have taken a step-by-step approach to databases and networking.
They have focused on specific forms of network database access, data distribution, and
distributed data management that are appropriate for particular application scenarios. This
paper studies the remote access method as a component of the distributed databases
management.

KEY WORDS: Distributed databases, Remote Access, Oracle

1. DISTRIBUTED DATA

Commercial data processing in a modern corporation has evolved a long way
from the centralized environment of the 1970s. Figure 1 shows a portion of a computer
network that you might find in a manufacturing company, a financial services firm, or
in a distribution company today. Data is stored on a variety of computer systems in the
network:

• Mainframes;
• Workstations and UNIX and Linux-based servers;
• LAN server;
• Desktop personal computers;
• Mobile laptop PC’s;
• Handheld device;
• Internet connections.

With data spread over many different systems, it’s easy to imagine requests that span
more than one database, and the possibility for conflicting data among the databases:

• An engineer needs to combine lab test results (on an engineering workstation)
with production forecasts (on the mainframe) to choose among three
alternative technologies.

* Lecturer, Ph.D. Student, University of Petroşani, Romania, petrini_mircea@yahoo.com

https://mail.google.com/mail/contacts/ui/ContactManager?js=RAW&maximize=true&hide=true&position=absolute&hl=en&emailsLink=true&sk=true&titleBar=false&border=NONE&eventCallback=ParentStub1262687044300&zx=1c8d5p-7xwxzp

204 Petrini, M.

• A financial planner needs to link financial forecasts (in an Informix database)
to historical financial data (on the mainframe).

• A product manager needs to know how much inventory of a particular product
is in each distribution center (data stored on six Linux servers) to plan product
obsolescence.

• Current pricing data needs to be downloaded daily from the mainframe to the
distribution center servers, and also to all of the sales force’s laptop computers.

• Orders need to be uploaded daily from the laptop systems and parceled out to
the distribution centers; aggregate order data from the distribution centers must
be uploaded to the mainframe so that the manufacturing plan can be adjusted.

• Salespeople may accept customer orders and make shipment date estimates for
popular products based on their local databases, without knowing that other
salespeople have made similar commitments. Orders must be reconciled and
prioritized, and revised shipment estimates provided to customers.

• Engineering changes made in the workstation databases may affect product
costs and pricing. These changes must be propagated through the mainframe
systems and out to the web site, the distribution centers, and the sales force
laptops.

• Managers throughout the company want to query the various shared databases
using the PCs on their desktops.

Figure 1. DBMS usage in a typical corporate network

 Distributed Databases Management Using Remote Access Method 205

As these examples suggest, effective ways of distributing data, managing
distributed data, and providing access to distributed data have become critical as data
processing has moved to a distributed computing model. The leading DBMS vendors
are committed to delivering distributed database management and currently offer a
variety of products that solve some of the distributed data.

2. REMOTE DATABASE ACCESS

One of the simplest approaches to managing data stored in multiple locations is

remote data access. With this capability, a user of one database is given the ability to
reach out across a network and retrieve information from a different database. In its
simplest form, this may involve carrying out a single query against the remote
database, as shown in figure 2. It may also involve performing an INSERT, UPDATE,
or DELETE statement to modify the remote database contents. This type of
requirement often arises when the local database is a satellite database (such as a
database in a local sales office or distribution center) and the remote database is a
central, corporate database.

In addition to the remote data access request, figure 2 also shows a
client/server request to the remote database from a (different) PC user. From the
standpoint of the remote database, there is very little difference between processing the
request from the PC client and processing the remote database access request. In both
cases, a SQL request arrives across the network, and the remote database determines
that the user making the request has appropriate privileges and then carries out the
request. In both cases, the status of the SQL processing is reported back across the
network.

Figure 2. A remote database server access request

206 Petrini, M.

The local database in figure 2 must do some very different work than the
process it normally uses to process local database requests, however. There are several
complications for the local DBMS:

• It must determine which remote database the user wants to access, and how it
can be accessed on the network.

• It must establish a connection to the remote database for carrying out remote
requests.

• It must determine how the local user authentication and privilege scheme maps
to the remote database. That is, does it simply pass the user name/password
supplied for local database access to the remote database, or is a different
remote user name/ password supplied, or should some kind of automatic
mapping be performed?
Several of the leading enterprise DBMS vendors offer the kind of remote

database access capability shown in figure 2. They differ in the specific way that
remote access is presented to the user and to the database administrator. In some cases,
they involve extensions to the SQL language accepted by the DBMS. In others, the
extra mechanisms for establishing remote access are mostly external to the SQL
language.

Sybase Adaptive Server Enterprise (ASE) offers a simple entry-level remote
database access capability. While connected to a local Sybase installation, the user can
issue a CONNECT TO SQL statement, naming a remote server that is known to the
local server. For example, if a remote server named CENTRALHOST contains a copy
of the sample database, then this statement:

CONNECT TO CENTRALHOST
makes that remote server the current server for the session. The local server in effect
enters a pass-through mode, sending all SQL statements to the remote server. The
remote database can now be processed directly over the connection, with standard,
unmodified queries and data manipulation statements:

Get the names and sales numbers of all salespeople who are already over
quota.
SELECT NAME, QUOTA, SALES

FROM SALESREPS
WHERE SALES > QUOTA;

Oracle takes an approach to remote database access similar to the capabilities
provided by other DBMS brands. It requires that Oracle’s SQL*Net networking
software be installed along with the Oracle DBMS on both the local and the remote
system. The database administrator is responsible for establishing one or more named
database links from the local database to remote databases. Each database link
specifies:

• Network location of the target remote computer system.
• Communications protocol to use.
• Name of the Oracle database on the remote server.
• Remote database user name and password.

To access a remote database over a database link, the local system user uses
standard SQL statements. The name of the database link is appended to the remote

 Distributed Databases Management Using Remote Access Method 207

table and view names, following an “at” sign (@). For example, assume you are on a
local computer system that is connected to a copy of the sample database on a remote
system over a database link called CENTRALHOST. This SQL statement retrieves
information from the remote SALESREPS table:

Get the names and sales numbers of all salespeople who are already over
quota.
SELECT NAME, QUOTA, SALES

FROM SALESREPS@CENTRALHOST
WHERE SALES > QUOTA;

Oracle supports nearly all of the query capabilities that are available for the
local database against remote databases. The only restriction is that every remote
database entity (table, view, etc.) must be suffixed with the database link name. Also,
Oracle does not support DDL or database updates via a database link. Here is a two-
table join, executed on the remote Oracle database:

Get the names and office cities of all salespeople who are already over quota.
SELECT NAME, CITY, QUOTA, SALES

FROM SALESREPS@CENTRALHOST, OFFICES@CENTRALHOST
WHERE SALES > QUOTA AND REP_OFFICE = OFFICE;

3. REMOTE DATA TRANSPARENCY

 With any of the remote database naming conventions that extend the usual
SQL table and view names, the additional qualifiers can quickly become annoying or
confusing. For example, if two tables in the remote database have columns with the
same names, any query involving both tables must use qualified column names - and
the table name qualifiers now have the remote database qualification as well.

A single column reference has grown to half a line of SQL text. For this
reason, table aliases are frequently used in SQL statements involving remote database
access. Synonyms and aliases are also very useful for providing more transparent
access to remote databases. Here’s an Informix synonym definition that could be
established by a user or a database administrator:
CREATE SYNONYM REMOTE_REPS

FOR SAMPLE@CENTRALHOST.JOE.SALESREPS;
The equivalent Oracle synonym definition is

CREATE SYNONYM REMOTE_REPS FOR JOE.SALESREPS@CENTRALHOST;
With this synonym in place, the preceding qualified column name becomes simply:
REMOTE_REPS.NAME
 Several DBMS brands take the synonym capability for transparent database
access one step further and permit views in the local database that are defined in terms
of remote database tables. Here is an Oracle view definition that creates a view called
EAST_REPS in the local database. The view is a subset of information from the
remote sample database:
Create a local view defined in terms of two remote tables.
CREATE VIEW EAST_REPS AS

SELECT EMPL_NUM, NAME, AGE, CITY

208 Petrini, M.

 FROM SALESREPS@CENTRALHOST, OFFICES@CENTRALHOST
WHERE REP_OFFICE = OFFICE
 AND REP_OFFICE BETWEEN 11 AND 19;
After this view has been defined, a user can pose queries in terms of the

EAST_REPS view, without worrying about database links or remote table names. The
view not only provides transparent remote access, but also hides from the user the
remote join operation between the OFFICES and SALESREPS tables.

Transparent access to remote data, provided by views and synonyms, is usually
considered a very desirable characteristic. It does have one drawback, however.
Because the remote aspect of the database access is now hidden, the network overhead
created by the access is also hidden. Therefore, the possibility of a user or programmer
inadvertently creating a great deal of network traffic through very large queries is
increased. The database administrator must make this trade-off when deciding whether
to permit remote transparent synonyms and views.

4. CONCLUSIONS

Supporting such distributed queries and transactions adds a major new level of
complexity (and potentially huge network data transmission overhead) to the remote
access. Because of this, although several commercial DBMS systems support
distributed queries and transactions, they are not heavily used in practice.

REFERENCES:

[1]. Fotache, M.; Strîmbei, C.; Cretu, L. - ORACLE 9i2 - Ghidul dezvoltării aplicaţiilor

profesionale, Editura Teora, Bucureşti, 2005
[2]. Fotache, M. - Dialecte SQL, Editura Gh. Asachi, Iaşi, 2002
[3]. Oracle Co. - Oracle Database, Administrator’s Guide, 11g
[4]. Oszu, T.; Valduriez, P. - Principles of Distributed Database Systems, 2nd Edition, Editura

Pretince Hall, 1999
[5]. Petrini, M. - Aplicaţii în SQL, Editura Focus, Petroşani, 2007

